
IOSR Journal of Engineering (IOSRJEN) 

e-ISSN: 2250-3021, p-ISSN: 2278-8719, www.iosrjen.org 

Volume 2, Issue 10 (October 2012), PP 59-65 

www.iosrjen.org                                                    59 | P a g e  

Analysis of Heat Flows in a Slab Using the Finite Element Model 
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Abstract: This research work sought to study the pattern of heat flows in a heat conducting clay slab using the 

finite element model. The theoretical formulation of the finite element model was developed and presented as the 

general equation governing quasi-harmonic and time dependent field functions. The element equation of the 

conducting slab under the study was formed and subsequently assembled by taking the summation over all the 

elements. The assembly equation reduces to a set of linear first order equations which forms the global heat 

diffusion equation. The findings of the study are presented in the plots which show the solution of the interior 

mesh points. This is made possible on the application of initial values and boundary conditions that predict 

completely the time histories of temperature distribution across the isotherms overlaid through the thickness of 

the slab. 

Index terms – Element equation, Finite element analysis, Isotherms, Quasi-harmonic. 

 

I. Introduction 
The crux of this work is to study the heat and mass flows through an isotropic clay slab surface subject 

to defined boundary conditions. In addition, the heat conducting slab is devoid of external forces i.e. the rate of 

external heat generation is zero, as well as no accumulation of matter within the material. The geometry of field 

quantities or continuum may be a problem to a close form solution of field functions encountered in engineering 

which allows for appropriate algorithm to obtain optimum solutions. Next important is to employ the ‘calculus 

of variation’ principle to obtain optimum continuum field functions whose boundary conditions are specified. 

About all quasi-harmonic phenomena are represented either by the partial derivatives of the function or by the 

well-known Laplace and Poisson equation, (Ziennkiewicz and Cheung, 1967). 

 

II. Theoretical Formulation 
In calculus of variation, instead of attempting to locate the points that extremize the function, one or 

more variables that extremize quantities called functional(𝜒), function of the functions that extremize the 

functional are found. (Ihueze and Ofochebe, 2011) presented the general equation governing quasi-harmonic and 

time dependent field functions as: 
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While the Euler’s theorem states that if the integral  
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is to be minimized, then the necessary and sufficient condition for the minimum to be reached is that the 

unknown function 𝜙(𝑥, 𝑦, 𝑧 ) should satisfy the following differential equation, 
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within the same region provided that 𝜙 satisfies the same boundary condition in both cases. 

 

From above, it was shown that the equivalent formulation to that of equation (1), is the requirement that the 

volume integral given below and taken over the whole region, should be minimized.  
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subject to 𝜙 obeying the same boundary condition and however,  𝜕𝜙 𝜕𝑡  is an invariant. 

In a typical case of one-dimensional ‘heat and mass’ flow through an isotropic clay surface subjected a specific 

boundary condition and devoid of external force (i.e rate of heat generation Q=0), the equivalent functional to be 

minimized reduces to; 
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Assuming no accumulation of matter within the sintered clay then 𝜒 can be relaxed for optimization of 

heat conduction through the thickness of a clay sample. This assumption would be appropriate in a low 

temperature process displaying free convention without external heat addition.  

For the particular case of the steady state heat conduction, the functions, 𝑘𝑥 , 𝑘𝑦  𝑎𝑛𝑑 𝑘𝑧   may be 

identified as anisotropic conductivity coefficients, the function 𝑄 as the rate of heat generation, the unknown 

field function as the temperature(𝑇), and 𝜕𝜙 𝜕𝑡  is due to accumulation of heat at various locations (provided 

the co-ordinates coincide with the principal axis of the material). The last term of equation (1) can be considered 

as a prescribed function of position only. Hence equation (5) may be re-written in corresponding heat flow 

terms as; 
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The finite element procedure is implemented further by assuming that for the one-dimensional case, 

heat exchange is executed in a region defined by a straight line (whose length corresponds to the thickness of the 

of the plate, w) discretized into a finite number of line elements described uniquely by two nodal points, while 

the nodes correspond to equivalent isotherms overlaid in a regular fashion across the entire surface as illustrated 

in figure 1 below. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1 Finite element model of 2-dimensional slab 

 

Considering a typical element of the region identified by the 2-nodes in a local co-ordinate system (i, j). In 

general, if within the element; 
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Hence; 
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Similarly; 
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Equation (7) is the shape function and 𝑁 is the interpolating function.  

Where, 
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With the nodal values of 𝑇 now defining uniquely and continuously the function throughout the region the 

‘functional’ 𝜒 can be minimized with respect to these values. This process is best accomplished by evaluating 

first the contributions to each differential such as 𝜕𝜒 𝜕𝑇𝑖  from a typical element, then adding all such 

contributions and equating to zero. Only the elements adjacent to node 1 will contribute to 𝜕𝜒 𝜕𝑇𝑖  just as only 

such elements contributed in plane elasticity of the equilibrium equation of such node. 

 

III. Element Equation Formulation 
If the value of 𝜒 associated with an element is designated with 𝜒𝑒  (implying integration limited to the 

length of the element) then the next equation is derived by differentiating equation (6); 

 
𝜕𝜒𝑒

𝜕𝑇𝑖
=   𝑘𝑦

𝜕𝑇

𝜕𝑦

𝜕

𝜕𝑇𝑖
 
𝜕𝑇

𝜕𝑦
 + 𝑐 𝑁 

𝜕𝑇

𝜕𝑡

𝜕𝑇

𝜕𝑇𝑖
 𝑑𝑦           …… . (10) 

 

With 𝑇 given as the ‘shape function’ defined by equation (7); evaluating the partial derivatives contained in 

equation (10) then; 
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Similarly; 
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Combining equations (11) and (12) gives a typical element equation of the general form; 
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Evidently the first product  𝑁  𝑁𝑇  is a scalar, hence the value of  𝑝  in computed by multiplying the value of 

the integral by unit vector to achieve a balanced degree of freedom with the vector  . 
 

Hence, the element equation can be expressed in a more concise form as; 
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IV. Assembly Equation 
The final equation of minimization procedure requires the assembly of all the differentials of 𝜒 and 

equating the result to zero. Typically, 
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the summation being taken over all the elements. Hence in the light of equations (13) and (14) the expression is 

written as; 
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mq,1 2 3 4 5

In which  𝐻  is the ‘stiffness matrix’ of the whole assembly, (Astley, 1992) and  𝑃  is a matrix assembled by 

precisely the same rule as the stiffness matrix from the components of𝑝𝑖𝑗 . 

V. Final Assembly Equation 
The generation of the final assembly equation for a typical heat conduction surface formulated above may 

be accomplished in the following synthesized procedures. 

Consider a slab of thickness 𝑤 = 10 𝑚𝑚, thermal conductivity, k = 0.72 W/m
o
C, specific heat capacity, Cp 

= 920 J/kg
o
C and density 𝜌 = 1780 𝑘𝑔/𝑚3 that is initially at a temperature of 30

o
C. Say at time t = 0, one side 

of the slab is brought in contact with water at Tw =40
o
C at all times, while the other side is subjected to 

convection to the environment at T∞ = 30
o
C, discretized into five (5) similar elements of length 𝑳 composed of a 

total of six (6) nodal points. The co-ordinates of these points in the universal system may be described as shown 

in figure 5.2. 

 

 

 

 

 

 

Figure 2 Finite element model of a sintered clay slab subjected to heat exchange with the surrounding. 

 

𝑝𝑖𝑗  and 𝑖𝑗 are evaluated separately for every individual element in global coordinate system. and the assembly 

obeyed consistent element topology and the resulting minimization equation of the global system is expressed in 

matrix form as follows: 
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      … . . (19) 

Substitution of 𝐿 = 𝑤 5  𝑎𝑛𝑑 𝑐 = 𝜌𝐶𝑝  𝑎𝑛𝑑 𝑘𝑦 = 𝑘 reduces the assembly equation to the following set of linear 

first-order equations. 
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Equation (20) is the global heat diffusion equation from which the time history of the temperature distribution of 

the idealized system was studied.  

 

VI. Results 
Equation (5.16) may not have a definite solution if the values of the objective function (temperature) at 

the borders and in the beginning of the process are not specified or known. Such specification is usually referred 

to as boundary condition and initial value respectively. Considering the particular case where the slab is initially 

at a temperature of 30
o
C (say) at time t = 0 while one of its ends is brought in contact with water reservoir at Tw 

= 40
o
C at all times and the other side is subjected to convection to an environment at T∞ = 30

o
C. 

 

This poses a boundary value problem in T (t) whose solution would emerge from the substitution; 

 

𝑇1 = 𝑇𝑤 = 40,𝑇6 = 𝑇∞ = 30,  𝜕𝑇1 𝜕𝑡  𝑡 =  𝜕𝑇6 𝜕𝑡  𝑡 = 0 
 

in equation (5.16) to obtain the following reduced equation 
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𝜕𝑇3 𝜕𝑡 = −3 + 0.15𝑇3 − 0.075𝑇4 

 

                 𝜕𝑇4 𝜕𝑡 = −0.075𝑇3 + 0.15𝑇4 − 2.25               ………  (21)   
 

𝜕𝑇5 𝜕𝑡 = −0.075𝑇4 + 2.25 

 

The resulting set of linear first order differential equation (21) is now solved subject to 𝑇2 0 = 𝑇3 0 =
𝑇4 0 = 𝑇5 0 = 30 as an initial value problem (IVP) with the expediency of MATLAB ‘dsolve’ command to 

arrive at the following exponential series: 

 
 𝑇2 𝑡 = 220 9 + 5 9 𝑒9 40𝑡 + 5𝑒3 40𝑡 + 1 4𝑡  

 
 𝑇3 𝑡 = 110 3 − 5 3 𝑒9 40𝑡 − 5𝑒3 40𝑡  

 
                         𝑇3 𝑡 = 100 3 + 5 3 𝑒9 40𝑡 − 5𝑒3 40𝑡                    …… . (22) 

 
 𝑇4 𝑡 = 230 9 − 5 9 𝑒9 40𝑡 + 5𝑒3 40𝑡 − 1 4𝑡  

 

 

 
Figure 3(a) Node 2 time response 

 

 
Figure 3(b) Node 3 time response 
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Figure 3(c) Node 4 time response 

 

 
Figure 3(d) Node 5 time response 

 

 
Figure 4: The generalize instantaneous subsurface temperature Profile 
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VII. DISCUSSION 

The solution of the interior mesh points presented above with the boundary conditions and the initial 

values predict completely the time histories of temperature distribution across the isotherms overlaid through the 

thickness of the slab - figure 3a-d.  

The result shows that during the conduction process when ‘t’ probably takes a value > 0, the 

instantaneous nodal temperatures 𝑇𝑖(𝑡) assume peak and minimum values between adjacent nodes of a typical 

element. This implies that the diffusion of heat at the nodes closer to heat source for any given element is 

accompanied by a certain degree of heat addition at the adjacent node confirming the quasi-harmonic nature of 

heat flow across the region. Also, as the time approaches infinity the parameter everywhere converges 

progressively and exponentially to the value fixed at the low temperature reservoir.  

This as well shows that the excess heat transmitted to the sub-surfaces due to the hot interface diffused 

rapidly into the low temperature reservoir through the oscillation of heat across the thickness of the slab. This 

characterize the conduction process and the associated surface convection, maintaining low temperature zones 

within the entire region over a long period of time.  The low temperature profile maintained over time across the 

slab can also be attributed to the low thermal conductivity of the material observed in the model.  

However, this result may not be the same for a case where the size of the heat source or sink (purported 

reservoir) is not large enough to sustain constant temperature at the boundaries (creating what may be regarded 

as a conditioned space). In such conditions, significant cooling effect is identified in space due to removal of 

sensible heat from the conditioned space in the form illustrated by figure 3a, but only to normalize on attaining 

the wet bulb temperature of the surrounding medium.  

 

VIII. Conclusion 
This research work has utilized the finite element model to study heat flows in a heat conducting slab. 

The result showed that during heat flows within and around the heat conducting slab, the instantaneous nodal 

temperatures 𝑇𝑖(𝑡) assume peak and minimum values between adjacent nodes of a typical element of the 

discretized slab. This implies that the diffusion of heat at the nodes closer to heat source for any given element is 

accompanied by a certain degree of heat addition at the adjacent node. This further verified the quasi-harmonic 

nature of heat flow across the region. Finally, as the time became infinite, the parameter everywhere converges 

progressively and exponentially towards the specified boundary condition at the lower temperature reservoir.  
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